Math Virtual Learning

Grade 8

Geometric Transformations: Multiple Transformations April 24, 2020

Math 8
 Lesson: April 24, 2020

Objective/Learning Target:

I can describe a possible sequence of transformations between two similar and/or congruent figures.

Warm Up:

Match the graph on the left with the transformation performed on the right.

4.

B. Reflection
C. Rotation
D. Dilation

$$
\square=\nabla \quad \square=\varepsilon \quad \partial=乙 \quad \forall=1 \quad \text { :uol!njos }
$$

Reference: Transformation Rules

Translation

$$
(x, y) \rightarrow(x+a, y+b)
$$

Reflection Across the X-Axis

$$
(x, y) \rightarrow(x,-y)
$$

Rotate Clockwise 90°

$$
(x, y) \rightarrow(y,-x)
$$

Rotate Clockwise 180°

$$
(x, y) \rightarrow(-x,-y)
$$

Reflection Across the Y-Axis

$$
(x, y) \rightarrow(-x, y)
$$

Rotate Counter-Clockwise 90°

$$
(x, y) \rightarrow(-y, x)
$$

Dilation

$$
(x, y) \rightarrow(r x, r y)
$$

Review of Transformations

Take notes on a piece of paper as you watch this video.

Translations and Dilations - Quick Look

Dilation

How To: Multiple Transformations

Given:

$\triangle A B C$ is $A(-5,-1), B(-3,-2), C(-3,2)$
Rule: Rotate 90° clockwise about the origin, then reflect the image across the y-axis.

1) Graph the pre-image.

For example, $A B C$ is our pre-image.
2) Plug the pre-image coordinates into the correct rule. (You can use slide 4 for reference.) Write and plot the new points, labeling them with a single prime.
The rule is: $(x, y) \rightarrow(y,-x)$
$A(-5,-1) \rightarrow A^{\prime}(-1,5)$
$B(-3,-2) \rightarrow B^{\prime}(-2,3)$
$C(-3,2) \rightarrow C^{\prime}(2,3)$
3) Plug the single prime points into the next rule. (You can use slide 4 for reference.) Write and plot the new points, labeling them with double prime.
The rule is: $(x, y) \rightarrow(-x, y)$
$A^{\prime}(-1,5) \rightarrow A^{3 \prime}(1,5)$
$B^{\prime \prime}(-2,3) \rightarrow B^{3 \prime}(2,3)$
$C^{\prime}(2,3) \rightarrow C^{\prime \prime}(-2,3)$
$<$ FINAL ANSWER

Practice 1

Use the transformation rules to complete each problem.

Given:
Δ ALT A(-5,-1) L(-3,-2) T(-3,2)
Rule: Translate the figure $(x+6, y-3)$, then reflect the image across the x-axis.

$A^{\prime}(\ldots, \ldots), L^{\prime}(\ldots, \ldots), T^{\prime}(\ldots, \ldots)$
A"(_,__), L"(__,), T"(_,__)

Given:

Δ ALT A(-4,-2) L(0,-2) T(-3,-5)
Rule: Rotate 180°, then reflect the image across the y-axis.

Answers on next page

Practice 1: Answer Key

$A^{\prime}(4,2)$	$A^{\prime \prime}(-4,2)$
$L^{\prime}(0,2)$	$L^{\prime \prime}(0,2)$
$T^{\prime}(3,5)$	$T^{\prime \prime}(-3,5)$

Practice 2

Use the transformation rules to complete each problem.

Given:

Δ ALT $\mathrm{A}(2,3) \mathrm{L}(1,1) \mathrm{T}(4,-3)$
Rule: Reflect the image across the x-axis, then reflect the image across the y-axis.

Given:
$\triangle \mathrm{ALT} \mathrm{A}(0,0) \mathrm{L}(3,0) \mathrm{T}(3,2)$
Rule: Reflect the image across the y-axis, then dilate the image by a scale factor of 2 .

$A^{\prime \prime}(, \quad, \quad)$, L" \qquad), T"(__

Practice 2: Answer Key

$\mathrm{A}^{\prime}(2,-3)$	$\mathrm{A}^{\prime \prime}(-2,-3)$
$\mathrm{L}^{\prime}(1,-1)$	$\mathrm{L}^{\prime \prime}(-1,-1)$
$\mathrm{T}^{\prime}(4,3)$	$\mathrm{T}^{\prime \prime}(-4,3)$

$$
\begin{array}{|ll}
\hline A^{\prime}(0,0) & A^{\prime \prime}(0,0) \\
L^{\prime}(-3,0) & L^{\prime \prime}(-6,0) \\
T^{\prime}(-3,2) & T^{\prime \prime}(-6,4)
\end{array}
$$

How To: Identify the Transformation Rules

1) Are the image and pre-image congruent?

These figures are congruent, so a dilation has not occured.
2) Are the image and pre-image rotated (turned)?

These figures are oriented the same way, so a rotation has not occured.
3) Are the image and pre-image mirrored (flipped)?

These figures are mirrored (up and down) and have been flipped across the x-axis.
4) Are the image and pre-image translated (slide)?

These figures have been moved (down and right) and have been translated down 2, right 5 .
5) Double check your answer. Make sure the set of transformation rules work.
Answer: Reflection across the x-axis, Translation Down 2, Right 5.

Practice 3

Identify the transformation rule for each problem.

a) reflected, then translated
b) rotated, then translated

a) rotated, then translated
b) translated, then reflected
c) reflected, then rotated
c) rotated, then reflected

Practice 3: Answer Key

a) reflected, then translated
b) rotated, then translated
c) rotated, then reflected

a) rotated, then translated
b) translated, then reflected
v) reflected, then rotated

Additional Resources:

ShapeMods Game - Multiple Transformations
Khan Academy - Lessons and Practice on Translations
Printable Graph Paper
Virtual Graph Paper

If you need extra graph paper:

If you need extra graph paper:

If you need extra graph paper:

